
J. Fluid Mech. (1999), vol. 399, pp. 117–150. Printed in the United Kingdom

c© 1999 Cambridge University Press

117

A unified analysis of
planar homogeneous turbulence using

single-point closure equations

By T. J O N G E N1† AND T. B. G A T S K I2

1 Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland
2 NASA Langley Research Center, Hampton, VA 23681, USA

(Received 21 January 1998 and in revised form 24 June 1999)

A unified approach for assessing and characterizing both the non-equilibrium and
equilibrium states of planar homogeneous flows is analysed within the framework
of single-point turbulence closure equations. The underlying methodology is based
on the replacement of the modelled evolution equation for the Reynolds stress
anisotropy tensor by an equivalent set of three equations for characteristic scalar
invariants or state variables. For stress anisotropy evolution equations which use
modelled pressure–strain rate correlations that are quasi-linear, this equivalence then
leads to an analytic solution for the time evolution of the Reynolds stress anisotropy.
With this analysis, the transient system characteristics can be studied, including the
dependence on initial states, the occurrence of limit-cycle behaviour, and the system
global stability. In the fixed-point asymptotic limit, these results are consistent with
and unify previous equilibrium studies, and provide additional information allowing
the resolution of some questions that could not be answered in the framework of
previous developments. A new result on constraints applicable to the development of
realizable pressure–strain rate models is obtained from a re-examination of the stress
anisotropy invariant map. With the analytic solution for the transient behaviour, some
recent non-equilibrium models, which incorporate relaxation effects, are evaluated in
a variety of homogeneous flows in inertial and non-inertial frames.

1. Introduction
The development of higher-order single-point turbulence closure models has evolved

from a largely phenomenological process to a more rigorously based mathematical
one. While the models still require calibration, the process followed has become more
structured and now includes, as required practice, comparative assessment with a
class of planar homogeneous flows. These homogeneous flows provide a great deal
of insight into key parameters characterizing the turbulence – such as the turbulent
stress anisotropy, the production-to-dissipation rate ratio, and the turbulent time
scale. While second-moment closures have yet to receive significant attention from
industrial users, recent renewed interest in algebraic stress models, which are directly
derivable from the Reynolds stress closures, have highlighted the need for a better
understanding of the behaviour of the Reynolds stresses at the level of the second-
moment closures.

Previous studies on several homogeneous flows (Speziale & Mac Giolla Mhuiris
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1989; Speziale, Sarkar & Gatski 1991; Speziale, Abid & Blaisdell 1996) have focused
on the fixed points associated with the equilibrium states of the Reynolds stresses in
order to assess higher-order models and their ability to reach the correct fixed points.
While these fixed-point studies were important and provided useful information
concerning the equilibrium state, they were naturally constrained by the lack of
information during the transient stage, especially the global stability of the solution,
the information on initial conditions, and the existence of limit cycles. Moreover, the
complexity of the system seemed to prevent any general assessment concerning the
behaviour of the Reynolds stresses in these flows, except in some particular cases.

Increased demands on the predictive capabilities of Reynolds-averaged Navier–
Stokes equations for more complex flows has fuelled the need for non-equilibrium
models. In the context of homogeneous turbulence, this is directly associated with
the transient behaviour of the flow. Thus, a thorough knowledge of the transient
dynamics and the subsequent evolution and stability of the fixed points is very
useful for the development of improved models. In this study, a unified approach
to assessing and characterizing both the non-equilibrium and equilibrium states of
planar homogeneous flows is developed within the framework of single-point turbulent
closure equations.

The dynamic behaviour of the Reynolds stresses in homogeneous flows is modelled
by a tensor evolution equation which can include additional higher-order effects such
as dissipation rate anisotropies (Jongen, Mompean & Gatski 1998) and quadratic
pressure–strain rate models (Speziale et al. 1991). Based on tensor representation
theory (Jongen & Gatski 1998b), an equivalent set of equations for characteristic
scalar invariants, or state variables, is obtained for the Reynolds stress anisotropy
tensor evolution, including these additional higher-order effects. An analytic solution
is then obtained when a quasi-linear pressure–strain rate model is used and when
an isotropic turbulent dissipation rate is assumed for the case of a slowly varying
normalised mean strain rate. With this solution, it is now possible to investigate the
full dynamic behaviour of the Reynolds stresses, including effects of initial states,
early time evolution, limit-cycle occurrence, existence and stability of asymptotic or
equilibrium states, and phase-plane analysis.

Fixed-point equilibrium analyses have been used previously in closure model de-
velopment. Speziale & Mac Giolla Mhuiris (1989) investigated the equilibrium states
predicted by both two-equation isotropic eddy viscosity and second-moment closure
models for the case of a homogeneous shear flow with and without rotation. A
simple quadratic pressure–strain rate correlation model formulation was investigated
by Sarkar & Speziale (1990), including the stability of the isotropic fixed point for the
return to isotropy case. In their development of a new pressure–strain rate correlation
model, Speziale et al. (1991) used the fixed points of the dynamical system associated
with the evolution of the Reynolds stress anisotropy tensor to assess and calibrate
their quadratic (SSG) pressure–strain rate model. Later, an expression for the equi-
librium states in plane homogeneous strain was also obtained (Speziale et al. 1996)
for the quasi-linear version of the SSG model (Speziale et al. 1991). More recently,
the equilibrium fixed points have been obtained analytically from the asymptotic
limit of the Reynolds stress equations (Girimaji 1997; Jongen & Gatski 1998a) for
planar homogeneous flows in both inertial and non-inertial frames. Unfortunately,
both Ying & Canuto (1996) and Girimaji (1996) found that an analysis of the equi-
librium state itself was not sufficient to uniquely identify the proper root to select for
the production-to-dissipation rate ratio required in their development of an algebraic
stress model. However, examining the asymptotic equilibrium limit of the temporal
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solution obtained here does yield the proper selection criterion for the production-to-
dissipation rate ratio needed. Moreover, the global stability of the solution can now
be characterised, including its dependence on the initial state. In addition, it is now
possible to demonstrate that the Reynolds stress invariants IIb and IIIb are uniquely
determined by the model closure coefficients, independent of any explicit dependence
on the mean deformation field. Furthermore, this approach yields constraints for the
development of more general and realizable pressure–strain rate correlation models.
With this extension to a broader range of homogeneous flows and the added insight
from the transient dynamics, the present results provide both a broader and more
unified description of the equilibrium states attainable by turbulent closures.

The calibration process used for the specification of the closure constants in the
turbulence models relys on equilibrium results of homogeneous flows to assess model
performance. This includes the numerical simulation or experimental investigation
of such flows coupled with a theoretical analysis of the model closure equations.
Recently, there has been interest in extending turbulent closure models to include
non-equilibrium effects. Such non-equilibrium models when used in conjunction with
time-dependent Reynolds-averaged Navier–Stokes (RANS) calculations can be an
alternative methodology to large-eddy (LES) or very large-eddy simulations (VLES)
(see Ferziger 1993; Speziale 1998). Most commonly used turbulent closures, including
the second-moment closures, rely on the previously discussed equilibrium conditions
for their calibration (model constant specification) and, to some extent, for their
functional form. Turbulent flows with characteristic states that deviate significantly
from these conditions cannot be expected to be well represented by these models. The
current approaches toward the development of such non-equilibrium models (Speziale
& Xu 1996; Speziale 1998; Girimaji 1999a) have used relaxation hypotheses for the
evolution of the Reynolds stress anisotropies. Inherent limitations of such approaches
are demonstrated here. Using the (temporal) analytic solution obtained from the
Reynolds stress evolution equations, an algebraic non-equilibrium model is obtained,
and is compared with the relaxation models in predicting a variety of temporally
evolving homogeneous flows (Leuchter & Benoit 1991; Tanaka et al. 1997).

2. Evolution of Reynolds stress anisotropy
Consider incompressible, homogeneous turbulent flow, where the velocity ui and

the kinematic pressure p are decomposed into the ensemble mean and fluctuating
parts:

ui = ūi + u′i, p = p̄+ p′. (2.1)

In homogeneous conditions, the velocity gradients ∂ūi/∂xj are independent of position.
These gradients are also assumed to be independent of time. The Reynolds stress
tensor τij ≡ u′iu′j is a solution of the time evolution equation

τ̇ij = −τik ∂ūj
∂xk
− τjk ∂ūi

∂xk
+ Φij − εij − 2Ωm(emkjτik + emkiτjk), (2.2)

which is valid in an arbitrary non-inertial reference frame that can undergo a rotation
with angular velocity Ωm relative to an inertial frame. In (2.2), eijk is the permutation
tensor and

Φij = p′
(
∂u′i
∂xj

+
∂u′j
∂xi

)
, εij = 2ν

(
∂u′i
∂xk

∂u′j
∂xk

)
, (2.3)
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are the pressure–strain rate correlation and the dissipation rate tensors (where ν is
the kinematic viscosity), respectively.

With the turbulent kinetic energy K ≡ 1
2
u′iu′i, the scalar turbulent dissipation rate

ε ≡ 1
2
εii, and the Reynolds stress anisotropy tensor

bij ≡ τij

2K
− δij

3
, (2.4)

the term Φij is modelled in the commonly used second-order closure models in the
general form (Speziale et al. 1991) as

Φij = −ε
(
C0

1 + C1
1

P
ε

)
bij + C2KSij + C3K

(
bikSkj + Sikbkj − 2

3
bmnSnmδij

)
−C4K(bikWkj −Wikbkj) + C4KΩm(bikemkj − emikbkj)
+C5ε

(
bikbkj − 1

3
bmnbnmδij

)
. (2.5)

Above, the strain rate Sij and rotation rate Wij tensors are defined as

Sij ≡ 1

2

(
∂ūi

∂xj
+
∂ūj

∂xi

)
, Wij ≡ 1

2

(
∂ūi

∂xj
− ∂ūj

∂xi

)
, (2.6)

and P ≡ −τijSij = −2KbijSij is the turbulence production. The coefficients C0
1 , C1

1 ,
and C2–C5 can, in general, be functions of the invariants formed on Sij and Wij .
Equation (2.5) can be shown to be the most general form for Φij (Speziale et al.
1991). For example, the pressure–strain rate model proposed in Speziale et al. (1991),
which is known as the SSG pressure–strain rate model, gives the following constant
values for the coefficients:

C0
1 = 3.4, C1

1 = 1.8, C2 = 0.36, C3 = 1.25, C4 = 0.4, C5 = 4.2. (2.7)

A variety of other pressure–strain rate models also fit into the form given in (2.5).
For example, the Launder, Reece & Rodi (1975) (LRR) model uses

C0
1 = 3.0, C1

1 = 0, C2 = 0.8, C3 = 1.75, C4 = 1.31, C5 = 0, (2.8)

while for the Gibson & Launder (1978) model,

C0
1 = 3.6, C1

1 = 0, C2 = 0.8, C3 = 1.2, C4 = 1.2, C5 = 0, (2.9)

and the model proposed by Taulbee (1992) has coefficients defined as

C0
1 = 3.6, C1

1 = 0, C2 = 0.8, C3 = 1.94, C4 = 1.16, C5 = 0. (2.10)

It has been known for some time (e.g. Reynolds 1989; Reynolds & Kassinos 1995)
that currently used pressure–strain rate correlation models have some inherent de-
ficiencies. Some of these are related to the rapid part of the pressure–strain rate
correlation which is composed of a mean velocity gradient contribution and a contri-
bution from the turbulent energy spectrum tensor. In almost all cases, the modelling
of the energy spectrum tensor contribution has been solely in terms of the Reynolds
stress anisotropy bij . One of the most fundamental examples of such a deficiency
is the case of homogeneous turbulence subjected to mean rotation without strain.
Models of the type shown in (2.5) predict no effect of rapid rotation on the second
or third invariants of the Reynolds stress anisotropy whereas both simulations and a
rapid distortion theory (RDT) analysis (see Mansour, Shih & Reynolds 1991) show
an effect through damped oscillatory behaviour of the Reynolds stresses. In a recent
low Reynolds number direct numerical simulation of other (weaker) elliptic flows,



Unified representation of single-point closures 121

Blaisdell & Shariff (1996) have shown that (high Reynolds number) higher-order
closure models such as the LRR and SSG models are unable to accurately predict
the correct temporal evolution of the turbulent kinetic energy. While the effects of
Reynolds number on the simulations are still not clear, these simulations and model
comparisons do raise concerns about the ability of single-point closure modelling of
elliptic flows. Nevertheless, many shear-dominated flow fields have been and can be
accurately computed with such pressure–strain rate models. The analysis to follow
explores the behaviour of such models when utilised in single-point, second-moment
closures.

The substitution of (2.5) into (2.2) yields the following general evolution equation
for the Reynolds stress anisotropy tensor bij , written in matrix form and in non-
dimensionalised variables:

d

dt∗
b = −1

η
a0b − a3

(
bS∗ + S∗b − 2

3
{bS∗}I)+ a2

(
bW ∗ −W ∗b)

+
1

η
a4

(
b2 − 1

3
{b2}I)− a1S

∗ − L∗, (2.11)

where

S∗ = S/{S2}1/2, W ∗ = W̃/{S2}1/2, L∗ = L/{S2}1/2, (2.12)

η = τ{S2}1/2, ζ = τ(−{W̃ 2})1/2, t∗ = t{S2}1/2, τ = K/ε. (2.13)

The tensor W̃ij accounts for non-inertial effects

W̃ij = Wij − cwΩmemij , (2.14)

where cw = (C4 − 4)/(C4 − 2). The following definitions are used for the coefficients
in equation (2.11):

a0 = α
P
ε

+ β, α = 1
2
C1

1 + 1, β = 1
2
C0

1 − 1, (2.15)

a1 = 1
2

(
4
3
− C2

)
, a2 =

(2− C4)

2
, a3 =

(2− C3)

2
, a4 =

C5

2
. (2.16)

In the context of equation (2.2), L(= d/τ) represents the effects of the dissipation rate
anisotropy (Jongen et al. 1998), with the dissipation rate anisotropy tensor defined as

d = dij =
εij

2ε
− δij

3
. (2.17)

In general, the tensor L can contain additional turbulence anisotropic effects. It will
be assumed in this paper that a suitable expression has been provided for L as a
tensor function of the tensors S∗ and W ∗, and of the scalars η and ζ.

Equation (2.11) is equivalent to (2.2), but must be supplemented with an equation
for the turbulent kinetic energy K

K̇ = P− ε. (2.18)

Finally, for closure, an equation for the turbulent dissipation rate ε has to be provided.
For instance, it is standard to assume that the evolution of ε is governed by

ε̇ = Cε1
ε

K
P− Cε2 ε

2

K
, (2.19)

where Cε1 and Cε2 are closure constants (Cε1 = 1.44 and Cε2 = 1.83 for the SSG
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model, and Cε1 = 1.45 and Cε2 = 1.90 for the Launder et al. (1975), and Gibson &
Launder (1978) models).

3. Representation and solution method
3.1. Equivalent scalar representation

The tensor relation (2.11) governing the evolution of the stress anisotropy cannot be
manipulated further because it involves matrix products and their transpose. Even
without the quadratic term (a4 = 0), the terms that factor b cannot all be grouped
to allow the simple integration of the ordinary differential equation. Moreover, the
dependence of the coefficient a0 upon b through the production-to-dissipation ratio
renders equation (2.11) genuinely nonlinear. The following technique, however, trans-
forms the tensor relation into an equivalent system of scalar ordinary differential
equations which is better suited for further analysis and which in turn can be solved
using the standard tools of the theory of systems of scalar differential equations.

With the evolution of the anisotropy tensor b governed by equation (2.11), the
tensor b will depend only on the tensors S∗ and W ∗, as well as on the scalar
quantities t∗, η, and ζ. It can be shown in this case that for two-dimensional flows the
exact representation for the tensor b is given by

b = {bS∗}S∗ +
{bW ∗S∗}
{W ∗2} (S∗W ∗ −W ∗S∗) + 6{bS∗2}(S∗2 − 1

3
I
)
. (3.1)

Equation (3.1) is a mathematical identity and shows that if the three scalar invariants
{bS∗}, {bW ∗S∗}, and {bS∗2} can be determined independently of (3.1), then knowledge
of these scalar functions is equivalent to knowing b. The interested reader is referred
to Jongen & Gatski (1998b) for additional details concerning the development of
tensorial representations and their analysis. In addition, the representation (3.1) can
be used to construct (see Appendix A) the nonlinear term in (2.11),

b2 − 1
3
{b2}I = 2{bS∗}{bS∗2}S∗ + 2

{bW ∗S∗}{bS∗2}
{W ∗2} (S∗W ∗ −W ∗S∗)

+

(
{bS∗}2 − 2

{bW ∗S∗}2
{W ∗2} − 6{bS∗2}2

)(
S∗2 − 1

3
I
)
, (3.2)

which clearly shows the same tensor function representation as in (3.1), as well as
a dependence on the same three scalar invariants. (The derivations in Appendix
A originally appeared in Jongen & Gatski (1998a), but are reproduced here for
completeness.) Independent of the representations shown in (3.1) and (3.2), equations
for the three scalar invariants {bS∗}, {bW ∗S∗}, and {bS∗2} can be formed (see
Appendix B) from the Reynolds stress anisotropy evolution equation given in (2.11).
For simplicity in the notation, the following variables are introduced:

B1 = {bS∗}, B2 = {bW ∗S∗}, B3 = {bS∗2}, (3.3)

and the representation in (3.1) is rewritten as

b = B1S
∗ − B2

R2
(S∗W ∗ −W ∗S∗) + 6B3

(
S∗2 − 1

3
I
)
, (3.4)

where

R2 =
ζ2

η2
= −{W̃

2}
{S2} = −{W ∗2}. (3.5)
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The evolution equation (2.11) is, therefore, equivalent to the system of ordinary
differential scalar equations in the scalar invariants {bS∗}, {bW ∗S∗}, and {bS∗2} that
is obtained as shown in Appendix B ((B 5)–(B 7)),

Ḃ1 =

(
2αB1 − β

η

)
B1 + 2a2B2 − 2a3B3 +

2a4

η
B1B3 − a1 − L1,

Ḃ2 = −a2R2B1 +

(
2αB1 − β

η

)
B2 +

2a4

η
B2B3 − L2,

Ḃ3 = − 1
3
a3B1 +

(
2αB1 − β

η

)
B3 +

a4

6η
B2

1 +
a4

3ηR2
B2

2 − a4

η
B2

3 − L3,


(3.6)

where the tensor L∗ appears through the invariants

L1 = {L∗S∗}, L2 = {L∗W ∗S∗}, L3 = {L∗S∗2}. (3.7)

Equation (3.6) is a system of three algebraic ordinary differential equations in the
three unknowns B1, B2, and B3, which is quadratic even if a4 = 0 because, as used in
obtaining (3.6), a0 depends on B1,

a0 = −2αηB1 + β. (3.8)

Note that the degenerate case of η = 0 is not considered because either the absence
of mean velocity gradients or the absence of a turbulence field would be implied. Of
course, no such restrictions apply to ζ, so the case of ζ = 0 is not precluded.

The dynamic system (3.6) is dependent on the initial conditions

B1,0 = {b0S
∗}, B2,0 = {b0W

∗S∗}, B3,0 = {b0S
∗2}, (3.9)

where b0 is a given initial anisotropy tensor. The study of the dynamic behaviour of
the Reynolds stress tensor governed by the modelled tensor evolution equation (2.11)
is now replaced with the study of the system of three scalar ordinary differential
equations (3.6).

The present tensor representation technique can be further exploited to characterize
the Reynolds stresses. With the formalism introduced in Appendix A,

b =

3∑
i=1

αiTi, (3.10)

where the scalar coefficients αi are

α1 = {bS∗}, α2 = {bW ∗S∗}/{W ∗2}, α3 = 6{bS∗2}, (3.11)

and the tensors Ti are given by

T1 = S∗, T2 = S∗W ∗ −W ∗S∗, T3 = S∗2 − 1
3
I , (3.12)

the following expressions are obtained:

{b2} =

3∑
i=1

3∑
j=1

αiαj{TiTj}, (3.13)

and

{b3} =

3∑
i=1

3∑
j=1

3∑
k=1

αiαjαk{TiTjTk}. (3.14)
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Using the Cayley–Hamilton theorem (Spencer & Rivlin 1959), it is straightforward to
show that the 3× 3 matrix of invariants {TiTj} is a diagonal matrix, with {T1T1} = 1,
{T2T2} = 2R2, and {T3T3} = 1

6
. The 27 invariants {TiTjTk}, (i, j, k = 1, 2, 3) have

been evaluated in the Appendix A. Thus, using the definitions in (3.3) the resulting
expression for the trace of the square and of the cube of the Reynolds stress anisotropy
is finally given by

{b2} = B2
1 +

2

R2
B2

2 + 6B2
3 and {b3} = 3B3

[
B2

1 +
2

R2
B2

2 − 2B2
3

]
. (3.15)

As a consequence of (3.15), the second and third invariants of the anisotropy, defined
as

IIb = − 1
2
{b2} and IIIb = 1

3
{b3}, (3.16)

are easily evaluated and can be linked together by

IIIb = −2B3

[
IIb + 4B2

3

]
. (3.17)

These relations are a direct consequence of the representation (3.4) of the Reynolds
stress anisotropy tensor, and are therefore always valid, independent of the way the
Reynolds stress tensor evolution is modelled. In the current context, the coefficients
Bi appearing in (3.15) and (3.17) are the solution of the dynamical system (3.6).

3.2. Temporal solution

The system of scalar ordinary differential equations (3.6) with the representation
in (3.4) is equivalent to the original tensor evolution equation for the Reynolds
stress anisotropy (2.11). However, it has a significant advantage in that it is much
more tractable and better suited for analysis than the original tensor equation. Any
expression for the extra anisotropy tensor L can be provided which involves the stress
anisotropy tensor to any degree of complexity. It then suffices to study the resulting
dynamical system (3.6) to have a complete description of the evolution of the Reynolds
stress anisotropy tensor (2.11). In the case of quasi-linear pressure–strain rate models,
such that a4 = 0 (compare (2.5) with C5 = 0) and no additional anisotropies are
included L = 0, an explicit solution of the system of ordinary differential equations
(3.6) can be obtained in closed form. The term quadratic in the stress anisotropy
which is only found in the SSG model can be omitted. This quasi-linear pressure–
strain model has been used in the derivation of the Gatski & Speziale (1993) algebraic
stress model, and has been found to perform as well as the quadratic form of the
model for equilibrium homogeneous flows. The solution procedure for the resulting
differential system is not straightforward, and the major steps of its derivation are
given in Appendix C. The final expression for the Reynolds stress anisotropy tensor,
which is the solution of the modelled evolution equation (2.11) with a4 = 0 and L = 0,
is rather compact and involves ratios of characteristic functions Ψi:

B1(t
∗) =

1

2α

[
β

η(t∗)
− Ψ3(t

∗)
Ψ2(t∗)

]
,

B2(t
∗) =

a2R2

2α

[
1− β

η(t∗)
Ψ1(t

∗)
Ψ2(t∗)

− 1

Ψ2(t∗)

]
+

1

Ψ2(t∗)
B2,0,

B3(t
∗) =

a3

6α

[
1− β

η(t∗)
Ψ1(t

∗)
Ψ2(t∗)

− 1

Ψ2(t∗)

]
+

1

Ψ2(t∗)
B3,0.


(3.18)
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The characteristic functions Ψi are the fundamental solutions associated with a
quadratic nonlinear system of two ordinary differential equations (see Appendix C)
and are related by Ψ2 = Ψ̇1 and Ψ3 = Ψ̇2,

Ψ1(t
∗) = C

[
3∑
r=1

pr
1

λr
eλrt

∗
+ p0(H +H0)

]
,

Ψ2(t
∗) = C

3∑
r=1

pre
λrt
∗
, Ψ3(t

∗) = C
3∑
r=1

prλre
λrt
∗
,


(3.19)

where

H = 2
3
a2

3 − 2a2
2R2,

H0 = 4α(a2B2,0 − a3B3,0),

pr = [λ2
r − 2αλrB1,0 − (H +H0)](λs − λq), r = 1, 2, 3,

p0 = (λ3 − λ2)/λ1 + (λ1 − λ3)/λ2 + (λ2 − λ1)/λ3,

 (3.20)

and C = [(λ2 − λ1)(λ3 − λ1)(λ3 − λ2)]
−1. In (3.20), the indices q and s are such that

eqrs = −1. Finally, the parameters λr are the eigenvalues that are obtained as roots of
the following characteristic cubic polynomial equation:

λ3 − β

η
λ2 − (H + 2αa1) λ+

β

η
H = 0. (3.21)

In general, the normalised strain rate depends on the time η = η(t∗), and its evolution
is governed by an additional equation obtained from the evolution equation for K
given by (2.18) and from the closure model equation for ε given by (2.19). In this
case, the normalised strain rate will be given by the differential equation

d

dt∗
η = 2ηB1(Cε1 − 1) + (Cε2 − 1), (3.22)

which must be solved in conjunction with the evolution of the coefficients Bi. However,
in the derivation of the explicit solution of the system of ordinary differential equations
(3.6), the normalised strain rate η was assumed to vary slowly, η̇/η ∼ 0 and η̈/η ∼ 0
(see Appendix C). Before performing the full dynamical analysis of the modelled
Reynolds stress evolution in the next section, it will be shown that the present solution
is still an extremely good approximation of the differential tensor evolution equation
when the normalised strain rate is varying in time. In general, planar homogeneous
flows can be described in an appropriate reference frame by the following expression
for the velocity gradients tensor (Leuchter & Benoit 1991):

∂ūi

∂xj
= 1

2

[
(D + ω)δi1δj2 + (D − ω)δi2δj1

]
, (3.23)

which yields

η2 = 1
2

(Dτ)2 , ζ2 = 1
2

[(ω − 2cwΩ) τ]2 , (3.24)

where D/2 is the strain rate of the flow, ω/2 is the rotation rate of the flow, and Ω is
the angular velocity of the reference frame relative to an inertial framing. As shown
in table 1, a wide class of homogeneous flows, both with and without system rotation,
can be described in terms of the flow-type parameter R,

R2 =

(
ω

D
− 2cw

Ω

D

)2

. (3.25)
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Flow |ω/D| |Ω/D| |R| Hb

Plane shear 1 0 1 −1.19
Plane strain 0 0 0 0.09
Hyperbolica < 1 0 < 1 > −1.19
Elliptica > 1 0 > 1 < −1.19
Rotating plane shear 1 0.25, 0.50 0.125, 1.25b 0.07, −1.91

a See Leuchter & Benoit (1991) for a description of this class of flows.
b These values are dependent on the pressure–strain rate model used (SSG model in this case).

Table 1. Characterization of common homogeneous turbulent flows.
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Figure 1. Time evolution of the system variables for a homogeneous shear case. The ini-
tial conditions are η0 = 2.39, b11,0 = −0.1, b12,0 = 0.2, b22,0 = 0.2. , Present solution; ,
numerical solution of the differential Reynolds stress equation. (a) Evolution of the stress
anisotropies; (b) evolution of the normalised strain rate.

First, consider a sheared flow (R = 1) in which the turbulent field is subjected to the
initial conditions η0 = 2.39, b11,0 = −0.1, b12,0 = 0.2, b22,0 = 0.2. This value of the initial
normalised strain rate η0 corresponds to the same initial value of ε0/SK0 = 0.296
that was used in the calibration of the SSG model (Speziale et al. 1991) for the
homogeneous shear flow case, where S = D = ω is the mean velocity gradient.
The initial value for the anisotropy tensor b0 has been chosen arbitrarily, since the
present solution is able to account for any initial anisotropy. As time elapses, the
anisotropy components and the normalised strain rate evolve towards their asymptotic
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Figure 2. Phase-plane evolution for a homogeneous shear case. The initial conditions are
η0 = 2.39, b11,0 = −0.1, b12,0 = 0.2, b22,0 = 0.2. , Present solution; , numerical solution
of the differential Reynolds stress equation; e, asymptotic solution.
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Figure 3. Phase-plane evolution for a homogeneous shear case. The initial conditions are
b11,0 = b12,0 = b22,0 = 0, and different values for η0 are used, as labelled. , Present solu-
tion; , numerical solution of the differential Reynolds stress equation; e, asymptotic solution.
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Figure 4. Phase-plane evolution for a rotation-dominated flow (ω/D = 2). The initial conditions are
η0 = 100, b11,0 = b12,0 = b22,0 = 0. , Present solution; , numerical solution of the differential
Reynolds stress equation.

equilibrium value, as shown in figure 1. From a dynamical system perspective, it is
common to represent the evolution of the system variables in the phase plane (η, bij),
as done in figure 2. Clearly, the evolution predicted by the present explicit solution
(3.18) is almost indistinguishable from that given by the numerical integration of
the differential equation. Moreover, the explicit solution is remarkably close to the
solution given by the numerical integration of the differential stress equation over
a wide range of initial values η0, as illustrated in figure 3, where isotropic initial
conditions (bij,0 = 0) have been used for simplicity. The equilibrium value reached by
the system is independent of the initial conditions, and is, of course, the same as the
one used for the original calibration of the SSG pressure–strain correlation model
(Speziale et al. 1991), i.e. η∞ = 4.26, b∞11 = 0.204, b∞12 = −0.157, b∞22 = −0.149.

Consider now a rotation-dominated flow, for which ω/D = 2 and R = 2. As
discussed further in the next section, this value of the flow parameter R leads to
an oscillatory evolution of the stress anisotropy components, whereas the normalised
strain rate grows unbounded. The stability of this class of elliptic flows has been
studied extensively using linearised theory (e.g. Cambon, Teissedre & Jeandel 1985;
Cambon et al. 1994). These and related studies (e.g. Salhi & Lili 1996) have shown
that single-point closures in the RDT limit (1/η → 0) cannot correctly reproduce the
damped oscillatory behaviour of the turbulence. As pointed out in § 2, such deficiencies
have been traced to models for the rapid part of the pressure–strain rate correlation
which are solely dependent on the stress anisotropy. Starting from an initially isotropic
stress field and from an initial (rapid-distortion) value for the normalised strain rate
arbitrarily set to η0 = 100, the system reaches a limit cycle for the anisotropy
components, while the normalised strain rate grows with superimposed oscillations,
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Figure 5. Phase-plane evolution for a rotation-dominated flow (ω/D = 2). The initial conditions
are η0 = 2, b11,0 = b12,0 = b22,0 = 0. , Present solution; , numerical solution of the differential
Reynolds stress equation.

as shown in figure 4. It is for this most stringent case of limit-cycle behaviour that the
assumption of slow variation of the normalised strain rate is the least adequate. The
present explicit solution is very accurate in capturing the initial phase of the evolution
of the anisotropy, and the period of the oscillations is also very well captured, but the
damping of the oscillations, whose rate is proportional to 1/η (as will be shown in the
next section), is not correctly reproduced. For smaller initial normalised strain rate
values, the initial damping of the oscillations is much stronger, and the prediction
of the amplitude of the oscillations at later times is incorrect, although the period is
correctly reproduced, as shown in figure 5, where η0 = 2.

These illustrations have shown that even with the assumption on the evolution of
the normalised strain rate used in obtaining the explicit time solution of the Reynolds
stress anisotropy evolution equation, the predictions are extremely close to the results
given by numerical integration of the differential equation in the general case. More
importantly, the present solution reproduces all the characteristic dynamical features
of the differential system, including the extreme case of limit-cycle behaviour. Even
though the differential system may suffer from deficiencies in certain flows (such as
the elliptic flows alluded to above), the emphasis here is on the ability of the algebraic
stress model to accurately replicate the behaviour of the differential system. These
results have shown that the transient solution obtained for the algebraic system can
qualitatively and, for the most part, quantitatively replicate the differential system.
The study of the properties of the solution (3.18) will therefore provide relevant and
accurate information on the modelled behaviour of the Reynolds stresses in planar
homogeneous turbulence.

4. Dynamical analysis
4.1. Transient behaviour

Equations (3.4) and (3.18) completely determine the solution of the modelled evolu-
tion equation for the Reynolds stress anisotropy tensor for all planar homogeneous
turbulent flows. Any initial stress anisotropy can be taken into account. The scalars
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Bi of the expansion in (3.4) involve ratios of the characteristic functions Ψi, which
are expressed as the sum of three exponential functions. Because the arguments of
the exponentials are the same for all characteristic functions and are given as the
roots of the characteristic polynomial (3.21), the dynamical behaviour of the stress
anisotropy will essentially be determined by the location of these roots in the complex
plane. More precisely, if there is at least one root with a positive real part, the ratios
1/Ψ2(t

∗), Ψ1(t
∗)/Ψ2(t

∗), and Ψ3(t
∗)/Ψ2(t

∗) will remain bounded at all times (provided
Ψ2(t

∗) 6= 0 for all t∗). In this case, the system is stable, and the solution will converge
to an asymptotic state (fixed point or limit cycle). It will be seen later that depending
on the initial conditions, the characteristic function Ψ2 may vanish for some time t∗.
In this case, the initial condition is outside the basin of attraction, and the solution
will diverge. If, on the other hand, all the roots have a negative real part, the ratios
1/Ψ2(t

∗) and Ψ1(t
∗)/Ψ2(t

∗) will grow unbounded, corresponding to an unstable sys-
tem. The dependence of the sign of the roots of the characteristic polynomial upon
the system coefficients will therefore be studied in order to characterize the dynamical
behaviour of the system. Defining ∆1 and ∆2 as

∆1 = −1

3

(
H + 2αa1 +

1

3

β2

η2

)
, ∆2 = −1

3

β

η

(
H − αa1 − 1

9

β2

η2

)
, (4.1)

the discriminant of the cubic polynomial equation (3.21) is given by

∆ = ∆3
1 + ∆2

2, (4.2)

and can be rewritten as

∆ = − 1

27

[
H
β4

η4
+ (α2a2

1 + 10αa1H − 2H2)
β2

η2
+ (H + 2αa1)

3

]
. (4.3)

Concerning the nature of the roots (denoted λ1, λ2, and λ3), three cases must be
distinguished:

(a) ∆ < 0

The three roots are real, and the characteristic functions Ψi are combinations of
real exponentials.

(b) ∆ > 0

Two roots are complex conjugates, for example, λ2 = d + iω, λ3 = d − iω, and
λ1 = λ. The characteristic functions can then be expressed as

Ψ1(t
∗) = C′[eλt∗ + edt∗(f11 cosωt∗ + f12 sinωt∗) + f13

]
,

Ψ2(t
∗) = C′[λeλt∗ + edt∗(f21 cosωt∗ + f22 sinωt∗)

]
,

Ψ3(t
∗) = C′[λ2eλt

∗
+ edt∗(f31 cosωt∗ + f32 sinωt∗)

]
,

 (4.4)

where C′ and fij are parameters obtained directly from (3.19).

(c) ∆ = 0

The roots are all real, and two of them are equal, for example, λ2 = λ3 = λ. In this
case, p1 = 0, and the third root λ1 has no effect on the characteristic functions.
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At this point, some properties of the roots of a cubic polynomial are recalled:

λ1 + λ2 + λ3 =
β

η
,

λ1λ2λ3 = −β
η
H,

λ1λ2 + λ2λ3 + λ3λ1 = −(H + 2αa1).

 (4.5)

When β > 0, the first property pertaining to the sum of the roots in (4.5) implies
that at least one root has a positive real part, independent of the value of the other
parameters (i.e. H , α, a1). The case β < 0 is less straightforward, and properties (4.5)
lead to the following sufficient (but not necessary) conditions for having at least one
root with a positive real part: H > 0 and 2αa1 > −H . Otherwise, the roots may all
have a negative real part. In summary, at least one root will always have a positive
real part when β > 0, and possibly when β < 0. As mentioned before, in this case the
characteristic functions Ψi will grow exponentially, and the system is stable. Moreover,
in the case of ∆ > 0, the characteristic functions grow with superimposed (damped)
oscillations of period T = 2π/ω.

The case of a vanishing root is of particular interest. Because of (4.5), one of the
roots is zero (e.g. λ1) if either H = 0, 1/η = 0 (RDT limit), or β = 0. The case 1/η = 0
will be referred here as the RDT limit since 1/η → 0 yields this limiting behaviour.
In the case H = 0, ∆ = −4α2a2

1[β
2/(2η)2 + 2αa1]/27, and the non-zero roots are given

by λ2,3 = β/(2η) ± ([β/(2η)]2 + 2αa1)
1/2, which can be real or complex. In the case

1/η = 0 or β = 0, ∆ = −(H + 2αa1)
3/27, and λ2,3 = ±(H + 2αa1)

1/2. When H<−2αa1,
∆ > 0 and the characteristic functions Ψ2 and Ψ3 have a purely oscillatory behaviour,
while Ψ1 is increasing as

∫
Ψ2. The absence of any damping behaviour in this limit

is reflected in the fact that the slow part of the pressure–strain correlation model
has been effectively removed from the analysis. The Rotta coefficient C0

1 enters solely
through the term β/η in the characteristic equation (3.21) and is effectively lost. The
coefficient C1

1 (which only appears here in the SSG model) only affects the frequency
of oscillation. With the primary effects of the slow part of the pressure–strain rate
correlation removed, any effects of damping would need to be embedded in the rapid
part of the model. As noted previously and shown in Salhi & Lili (1996), current
rapid pressure–strain models are unable to display such behaviour.

Interestingly, the fact that the sign of β plays a major role in the stability of the
system has already been noticed in Sarkar & Speziale (1990), where it has been
shown for a simplified form of the pressure–strain rate model (2.5) with C1

1 = C2 =
C3 = C4 = 0, that a stable fixed point existed only when the Rotta coefficient
C0

1 > 2 (corresponding to β > 0, see definition (2.15)). We have shown here that
the case C0

1 = 2 is in fact a limit cycle, since the characteristic functions are then
purely oscillatory. Abid & Speziale (1993) have also discussed the effect of the Rotta
coefficient on the prediction of the equilibrium states in an homogeneous shear flow,
and have concluded that the Rotta coefficient C0

1 should be taken to values slightly
higher than 2 in order to obtain the best model predictions, including the logarithmic
layer in a channel. It should be noted that virtually all the standard models for the
pressure–strain correlation tensor lead to values of β > 0 (e.g. β = 0.7 for the SSG
model and β = 0.5 for the Launder et al. (1975) model).

Even in the case where at least one root has a positive real part, the system
may become unstable, depending on the initial conditions. For a given set of model
parameters, the set of all initial conditions b0 that evolve to a bounded asymptotic
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Figure 6. Evolution of the discriminant of the cubic characteristic equation as a function of η, for
different values of the flow parameter R, as labelled. The closure coefficients are given by the SSG
(Speziale et al. 1991) model.

state is called the basin of attraction of that asymptotic state. In terms of the
present explicit solution in time, the basin of attraction is defined by the set of initial
conditions Bi,0 such that Ψ2(t

∗) 6= 0 for all times t∗.
As an illustration, consider the case of a pressure–strain rate model with constant

coefficients, whose values are given by the SSG model. Since H is a function of R
(see equation (3.20)), the value of the discriminant ∆ will essentially be determined by
R and η. Figure 6 shows the evolution of ∆ as a function of η, for different values of
the flow parameter R. Three distinct cases can be identified in the figure. For mean
flow fields such that H > 0, that is, |R| < R1, with

R1 =
a3√
3a2

(4.6)

(R1 = 0.271 for the SSG model), the discriminant is always negative, and the three
roots are always real, for any value of η. For values of H such that −2αa1 < H < 0,
that is R1 < |R| < R2, with

R2 =
1

a2

(
1
3
a2

3 + αa1

)1/2
(4.7)

(R2 = 1.231 for the SSG model), the roots will have a different nature depending
on the magnitude of η, and the evolution of the stress anisotropy will contain an
oscillatory component for sufficiently small values of the normalised strain rate.
Finally, for values H < −2αa1, that is, |R| > R2, the discriminant is now always
positive, and the evolution of the stress anisotropy components will be composed of
damped oscillations. Once again note that only in the limit 1/η = 0 is the effects of
damping removed from the algebraic system; otherwise, the damping effect of the
slow part of the pressure–strain rate model is retained from the differential system.

4.2. Asymptotic states

It has been shown in the previous subsection that when β > 0, the characteristic
functions Ψi are always increasing, except when 1/η = 0. For 1/η 6= 0, when the
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effect of the initial conditions has vanished, the exponential that corresponds to the
root with the largest real part becomes dominant, and the ratios of the characteristic
functions converge to the values[

Ψ3(t
∗)

Ψ2(t∗)

]
∞

= lim
t∗→∞

Ψ3(t
∗)

Ψ2(t∗)
= λ∞,

[
Ψ1(t

∗)
Ψ2(t∗)

]
∞

= lim
t∗→∞

Ψ1(t
∗)

Ψ2(t∗)
=

1

λ∞
, (4.8)

where

λ∞ = max
r=1,2,3

Re (λr). (4.9)

The asymptotic values of the coefficients Bi are given by

B∞1 = −λ∞
2α

(
1− β

λ∞η∞

)
,

B∞2 =
a2R2

2α

(
1− β

λ∞η∞

)
= −a2R2

λ∞
B∞1 ,

B∞3 =
a3

6α

(
1− β

λ∞η∞

)
= − a3

3λ∞
B∞1 ,


(4.10)

where η∞ is the equilibrium value achieved by the normalised strain rate. By definition,

P
ε

= −2{bS∗}η = −2ηB1, (4.11)

and the asymptotic state therefore verifies the following interesting property:

λ∞η∞ = α

(P
ε

)
∞

+ β = a0, (4.12)

obtained by using (4.10). Note that the values of the coefficients α, β, and ai refer,
in the general case of variable closure coefficients, to the asymptotic value of these
coefficients. The equilibrium value of the production-to-dissipation ratio (P/ε)∞ is
determined by the K and ε evolution equations. For the standard approach where
equations (2.18) and (2.19) are used, this value is given by(P

ε

)
∞

=
Cε2 − 1

Cε1 − 1
. (4.13)

Relationship (4.12) linking together the equilibrium values of the production-to-dis-
sipation ratio, the characteristic eigenvalue, and the normalised strain rate, can be
taken into account in order to simplify the characteristic polynomial equation (3.21),
which can then be recast as a relation giving the value of η∞ in terms of (P/ε)∞ and
R: 

1

η2∞
= 2

a1

a0

(P
ε

)−1

∞
+

1

a2
0

H, for −Rlim < R < Rlim,

1

η2∞
= 0, otherwise

(4.14)

where

Rlim =
1

a2

[
1
3
a2

3 + a0a1

(
P
ε

)−1

∞

]1/2

. (4.15)
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This relationship between the equilibrium value for the production-to-dissipation
ratio (P/ε)∞, the equilibrium normalised strain rate η∞, and the flow-type parameter
R has to be satisfied by any planar homogeneous flow described by the Reynolds
stress model equation (2.2), as discussed by Jongen & Gatski (1998a). In fact, equation
(4.14) is the rigorous generalization of the expression found by Speziale & Mac Giolla
Mhuiris (1989) (see their equation (73)) for the equilibrium states in the case of a
homogeneous shear flow with and without rotation, and by Speziale et al. (1996)
(see their equation (22)) in the plane homogeneous strain case. As discussed in the
previous subsection, the value ∆ = 0 divides the plane (R, η) into two regions in which
the Reynolds stress components have distinctly different behaviours in time. These
regions are illustrated in figure 7, where the solid lines are determined by the locus of
points (R, η) such that ∆ = 0 in the SSG pressure–strain rate case. Figure 7 also shows
the locus of asymptotic solutions 1/η∞ as a function of R, as defined by (4.14). (Note
the dashed line in figure 7.) The symbols correspond to several planar homogeneous
flows. (See table 1.) Because for a given planar homogeneous flow the value of the
flow parameter R is fixed, the system will evolve along vertical lines in figure 7.
For values of (R, η) situated in region I of figure 7, the roots of the characteristic
polynomial are real, and the Reynolds stress components converge to the asymptotic
solution as ratios of real exponentials. For example, planar strain flows and rotating
shear flows with Ω/D = 0.25 will always have an evolution that is characterised by
the ratio of growing exponentials, for any initial condition on the anisotropy b0 in
the basin of attraction, or on the normalised strain rate η0. Points in region II have
a time evolution with a damped oscillatory character, and the asymptotic state is
a spiral sink. The rate of damping of the oscillations is proportional to 1/η, with
no damping at all when 1/η = 0 (RDT limit). For example, a shear flow with high
rotation (Ω/D = 0.5) is such that |R| > R2, and the stress components will evolve
to their asymptotic value with damped oscillations. Note that for the homogeneous
shear case (R1< |R|<R2), the two types of evolution can be experienced depending
on the value of η. As already mentioned, for |R|>Rlim, the asymptotic solution for
the normalised strain rate is 1/η∞ = 0, and the solution is purely oscillatory, i.e. a
limit cycle is reached.

For values of the flow parameter R outside the range [−Rlim,Rlim], the asymptotic
value of the normalised strain rate is 1/η∞ = 0, and the representation coefficients
given by (4.10) are

B∞1 = −λ∞/(2α), B∞2 = a2R2/(2α), B∞3 = a3/(6α). (4.16)

However, as shown before, for 1/η = 0, the solution reaches a limit cycle for the
anisotropy, and no fixed-point asymptotic state exists. The solution (4.16) is, therefore,
spurious because the real behaviour of the anisotropy is purely oscillatory in time.

In previous studies (Ying & Canuto 1996; Girimaji 1996), an expression equivalent
to (4.10) was obtained from a direct analysis of the asymptotic state of (2.11). Written
in the present formalism, the asymptotic value for the representation coefficient B∞1
was obtained from the roots of a cubic polynomial in B∞1 ,

4α2(B∞1 )3 − 4α
β

η
(B∞1 )2 +

(
β2

η2
−H − 2αa1

)
B∞1 +

β

η
a1 = 0, (4.17)

which led to the problem of choosing one of the three roots so that the correct
value of B∞1 was retained. This question could not be rigorously answered, and the
selection of the proper root was done on the basis of continuity arguments (Ying &
Canuto 1996; Girimaji 1996). With the present dynamic approach of the Reynolds
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Figure 7. Time-evolution types for the Reynolds stress tensor in the (R, 1/η)-plane. , Locus
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coefficients are given by the SSG (Speziale et al. 1991) model.

stress equation, the proper choice for the roots in (4.17) is obvious and is based on
the limit of a dynamical process. Clearly, the correct root is the one that controls the
asymptotic behaviour of the system (i.e. λ∞). In terms of B∞1 , B∞1 must be taken as
the root in (4.17) that has the lowest real part.

Replacing in (3.15) the coefficients Bi by their expression (4.10), the asymptotic
value of the Reynolds stress anisotropy invariants is given by

II∞b = − 1

8α2

(
1− β

λ∞η∞

)2 (
λ2
∞ +H + 4a2

2R2
)
, (4.18)

and

III∞b =
a3

24α3

(
1− β

λ∞η∞

)3 (
λ2
∞ −H + 4

9
a2

3

)
. (4.19)

Using property (4.12), the second and third invariants are easily expressed as

II∞b = − 1

4a0

(P
ε

)2

∞

[
a1

(P
ε

)−1

∞
+

2

3

a2
3

a0

]
, (4.20)

and

III∞b = − a3

12a2
0

(P
ε

)3

∞

[
a1

(P
ε

)−1

∞
+

2

9

a2
3

a0

]
, (4.21)

which leads to the following relation between the second and third invariants:

III∞b = − a3

3a0

(P
ε

)
∞

[
II∞b +

a2
3

3a2
0

(P
ε

)2

∞

]
. (4.22)

This fundamental relation is satisfied by the asymptotic states of any Reynolds
stress closure using the quasi-linear pressure–strain rate correlation model (2.5) in
a planar homogeneous flow. We have therefore proven the following result: In any
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planar homogeneous flow, the equilibrium states predicted by the Reynolds stress model
equations using the quasi-linear form of the pressure–strain rate (2.5) are such that
the second and third invariants II∞b and III∞b do not depend explicitly on {S2} and
{W̃ 2} (i.e. the flow field), and depend only on the pressure–strain rate model coefficients
C0

1 , C
1
1 , C2, C3, and on the equilibrium value of the production-to-dissipation rate ratio(

P/ε
)
∞ (i.e. the closure coefficients Cε1 and Cε2 of the ε evolution equation). In other

words, current pressure–strain rate models with constant closure coefficients will
predict the same anisotropy invariants in a homogeneous shear as in a homogeneous
strain, for instance. Note also that the coefficient a2 (thus C4) does not play any role
in the determination of II∞b and III∞b . Removing the effects of W̃ on the equilibrium
system is a deficiency of current Reynolds stress closures and specifically the rapid
part of the pressure–strain rate correlation model. This deficiency was highlighted
previously for the case of rapidly rotating turbulence (Reynolds 1989), but through
this analysis is also shown to occur outside the RDT range for the invariants II∞b
and III∞b .

In order to improve Reynolds stress model predictions, a number of recent studies
(Speziale 1998; Girimaji 1999b) have proposed to sensitize the pressure–strain rate
correlation coefficients to the flow-field invariants {S2} and {W̃ 2}, and to the turbu-
lence time scale τ, which is equivalent to assuming that

C0
1 = C0

1 (η, ζ), C1
1 = C1

1 (η, ζ), Ci = Ci(η, ζ), i = 2, . . . , 5. (4.23)

Speziale (1998) modified the Ci(η, ζ) coefficients indirectly by using a Padé approx-
imation extension of the original Gatski & Speziale (1993) explicit algebraic stress
model which satisfies the RDT limiting behaviour of homogeneous shear flow. Giri-
maji (1999b) developed closure values for both C2(η, ζ) and C4(η, ζ) using RDT and
equilibrium results for homogeneously strained turbulence, and the equilibrium be-
haviour of the bifurcation points for elliptic flows, respectively. Since equations (4.20)
and (4.21) establish the causality between the model coefficients in the pressure–strain
rate correlation model and the invariants of the asymptotic state of the anisotropy
for planar homogeneous turbulence, it is now possible to develop improved pressure–
strain rate correlation models that lead to results closer to the observed equilibrium
behaviour by analysing the response of the stress anisotropy to changes in the closure
coefficients. One other implication of the above relationships is that it is now possible
to assess the realizability of Reynolds stress models from a new perspective, and
to derive new constraints on the closure coefficients. The constraint of realizability
requires that a Reynolds stress model yields non-negative component energies in all
turbulent flows, with the Schwarz inequality satisfied for each off-diagonal component
of the Reynolds stress tensor (Schumann 1977). It can be shown (Lumley 1978) that
in order to be realizable, the second and third invariants of the stress anisotropy
tensor must be located in the region of the invariant plane (IIIb,−IIb) delimited by
the curves

−IIb = 1
9

+ 3IIIb and − IIb = 3

∣∣∣∣IIIb2

∣∣∣∣2/3 (4.24)

with −1/108 6 IIIb 6 2/27. The standard strategy developed in previous studies
(Schumann 1977; Lumley 1978; Speziale, Abid & Durbin 1994) has been to impose
conditions on the time derivative Dτij/Dt of the Reynolds stress tensor in order to
prevent the model from predicting non-realizable states. In this case, the behaviour of
the dynamical system was modified by imposing restrictions on the evolution pattern
of the Reynolds stresses, and realizability was generally enforced by implementing
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weak and strong realizability constraints (Speziale et al. 1994) that are activated as
soon as the Reynolds stress tensor reaches one of the boundaries of the realizability
domain. With the present methodology giving explicitly and analytically the relation
between the equilibrium states and the model parameters, it is possible to directly
impose realizability conditions on the Reynolds stresses themselves, and full control
of the behaviour of the model can be obtained, even when far from the realizability
domain boundaries. The sensitivity of the equilibrium values to variations in the
model coefficients is illustrated in the invariant maps given in figure 8.

From the expressions (4.20) and (4.21) of the stress invariants, it is possible to
further derive algebraic constraints on the closure coefficients, and to determine
ranges in which these coefficients must lie in order to guarantee the realizability
of the turbulence predictions. The relationships (4.20) and (4.21) between the stress
anisotropy invariants and the closure coefficients can be rewritten as a function of
the following two groups of coefficients only:

X =
a2

3

a0a1

(P
ε

)
∞

and Y =
a3

a1

, (4.25)

and thus

II∞b = − 1

12

X

Y 2
(2X + 3), (4.26)

and

III∞b =
1

108

X2

Y 3
(2X + 9). (4.27)

To each point in the invariant plane (IIIb,−IIb) corresponds at least one point in
the (X,Y )-plane. There will therefore exist a region of the (X,Y )-plane where the
corresponding turbulence state is realizable. This is shown in figure 9, where the
shaded area in the (X,Y )-plane is the realizable region. For any choice of pressure–
strain rate correlation model coefficients, the corresponding point in the (X,Y )-plane
must lie in the shaded area for the turbulence predictions to be realizable. The
boundaries of these regions correspond to the boundaries of the invariant map. The
curves Y1, Y2, and Y3, delimiting the realizable region, are defined by

Y1 = X, X 6 −3 and X > 3
2
,

Y2 = − 1
2
X − 1

2
[3X(X + 3)]1/2 , X > 0,

Y3 = − 1
2
X + 1

2
[3X(X + 3)]1/2 , X 6 −3 and 0 6 X 6 3

2
.

 (4.28)

With this diagram, it is now easy to design new pressure–strain rate correlation
coefficients that guarantee realizability by forming the groups X and Y , and checking
that the points lie in the realizable region. Of course, other considerations may
be taken into account in the design of improved pressure–strain rate correlation
models; the analysis provided here can be used in conjunction with any other design
methodology in order to obtain well-behaved Reynolds stress closure models.

5. Non-equilibrium models
In the context of non-equilibrium turbulence modelling, it is essential that the

closure be able to replicate the evolution of the individual stress components. It has
been shown (Mansour et al. 1991; Speziale et al. 1996; Salhi & Lili 1996; Blaisdell
& Shariff 1996) that in homogeneous flows where R > 1 (elliptic flow), single-point
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Figure 8. Equilibrium values in the invariant map (IIIb,−IIb) as a function of the closure coefficients
C0

1 , C1
1 , C2, C3, and the ratio P/ε in (2.5). The arrows indicate the direction of increase of the

parameter value. (a) Variation of C2 from −2 to 2; (b) variation of C3 from −4 to 6; (c) variation
of P/ε from 0 to 20; (d) Variation of C1

0 or C1
1 from 0 to 10. e, Location corresponding to the SSG

(Speziale et al. 1991) model.

closures are unable to capture the correct dynamic behaviour of the turbulence
statistics. In inhomogeneous flows, such elliptic flow regions can be embedded within
the flow domain and be an inherent source of error between model predictions and
measurements (or simulation). Outside this region R 6 1 single-point closures are
able to predict a wide variety of flows and can be extended to the more complex
non-equilibrium flows.

The most sophisticated level of single-point closure modelling is the differential
Reynolds stress model, where an evolution equation is solved for each individual
Reynolds stress component (see equation (2.11)). The present explicit time-dependent
solution of (2.11) allows us to develop a non-equilibrium model in the framework
of the more economical two-equation turbulence closures. In this case, the evolution
equations (2.18) and (2.19) for the scale-determining quantities K and ε are integrated
in time, with the Reynolds stress tensor determined at every instant by the relations
(3.4) and (3.18).

The majority of previously proposed non-equilibrium models (Speziale & Xu 1996;
Girimaji 1999a) are based on a relaxation time approximation around a prescribed
equilibrium state. This can be expressed as

db

dt∗
= −C

η
(b − b∞), (5.1)

where b∞ is the given equilibrium state and C is a relaxation coefficient. The general
solution of (5.1) is given by

b(t∗) =

(
1− exp

(
−
∫ t∗

0

(C/η) ds

))
b∞ + b0 exp

(
−
∫ t∗

0

(C/η) ds

)
. (5.2)
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Figure 9. (a) Map in the plane (X,Y ) of the domain in which the predicted turbulence is
realizable. (b) Corresponding points in the invariant map (IIIb,−IIb). Equilibrium points for
different pressure–strain rate correlation models are also included: SSG, Speziale et al. (1991);
LRR, Launder et al. (1975); GL, Gibson & Launder (1978); T, Taulbee (1992).

Although this formulation takes into account the initial conditions b0, the evolution
toward equilibrium is accomplished in a simplistic way through the multiplication
by a scalar, which imposes a strong restriction on the evolution of the individual
anisotropy components. Due to the isotropic scaling of the final state, the anisotropy
components will all evolve in a similar way to equilibrium. For instance, in the case
of isotropic initial conditions, each stress anisotropy component will evolve at the
same rate to the asymptotic value,

b11

b∞11

=
b12

b∞12

= · · · = 1− exp

(
−
∫ t∗

0

(C/η) ds

)
. (5.3)

In order to compare the performance of the present non-equilibrium model and the
relaxation models, the equilibrium state b∞ is defined such that the models converge
to the same asymptotic solution. For this, b∞ is defined as the representation (3.4)
with the coefficients given by (4.10). In the relaxation model proposed by Speziale &
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Xu (1996), the expression for the relaxation coefficient C , consistent with the Crow
constraint (Speziale & Xu 1996), is given by

C =
8

15

1

BS1
, (5.4)

where BS1 = 0.3326 is the equilibrium value of the representation coefficient B1 in
(3.4) for a strained flow, using the SSG pressure–strain rate model coefficients. This
guarantees that the early time behaviour of the relaxation of the anisotropy is well
captured in an initially isotropic turbulence subjected to a mild strain. The relaxation
model proposed by Girimaji (1999a) can also be cast in the present formalism, with
the relaxation coefficient defined as

C =
η∞

η∞ − η
dη

dt∗
. (5.5)

With this expression for the relaxation coefficient, the scalar function appearing in
(5.2) is easily evaluated

exp

(
−
∫ t∗

0

C

η
ds

)
=

∣∣∣∣η∞ − η(t∗)
η∞ − η0

∣∣∣∣ η0

η(t∗)
. (5.6)

Therefore, it is evident that this type of relaxation model leads to a restricted evolution
pattern for the stress anisotropy tensor, since (5.2) and (5.6) give

b(t∗) =

[
1−

∣∣∣∣η∞ − η(t∗)
η∞ − η0

∣∣∣∣ η0

η(t∗)

]
b∞ +

∣∣∣∣η∞ − η(t∗)
η∞ − η0

∣∣∣∣ η0

η(t∗)
b0. (5.7)

According to Girimaji (1999a), the underlying motivation for this model is to general-
ize the equilibrium assumption db/dt∗∼0 on which algebraic stress closures are based
(Gatski & Speziale 1993). Written in the phase-space, the approximation corresponds
to the assumption

db

d(1/η)
∼ b − b∞

(1/η)− (1/η∞)
, (5.8)

which is assumed to model the ‘slow-manifold’ stage of the anisotropy evolution
toward the fixed point (Girimaji 1999a). But in this case, a simple integration of
(5.8) (or a rearrangement of equation (5.7)) shows that the evolution of the stress
anisotropy in the phase-space is constrained to the curve

b − b∞ =

∣∣∣∣ 1/η − 1/η∞
1/η0 − 1/η∞

∣∣∣∣ (b0 − b∞) , (5.9)

corresponding to straight lines connecting the initial state (1/η0, b0) to the equilibrium
state (1/η∞, b∞) in the (1/η, b)-plane.

Beside the limited validity of this hypothesis, this type of relaxation model may
lead to a fundamental stability problem when coupled with an evolution equation for
η such as (3.22). For positive values of the relaxation coefficient C , as for instance
in the Speziale & Xu (1996) model, the simple linear combination in (5.2) always
gives bounded anisotropy values, lying between the initial anisotropy state b0 and
the equilibrium state b∞, and the relaxation model is well-behaved. But when the
relaxation coefficient is allowed to take negative values, the anisotropy tensor may
grow unbounded. Consider for instance the case where C is defined as in (5.5). With



Unified representation of single-point closures 141

0.6

0.4

0.2

0

–0.2

(a) ¿/D = 0.25

¿/D = 0

¿/D = 0.5

¿/D =1

–2Db12

0.6

0.4

0.2

0

–0.2

(b)

–2Db12

¿/D = 0.25

¿/D = 0

¿/D = 0.5

¿/D =1¿/D = 0

¿/D
= 0.25

0 2 4 6 8 10

t*

Figure 10. Time evolution of the normalised production P/K = −2Db12 for a homoge-
neous shear subjected to a solid-body rotation. (a) , Present non-equilibrium model.
(b) , Non-equilibrium relaxation model (Speziale & Xu 1996); , non-equilibrium
relaxation model (Girimaji 1999a). For both figures: e, DNS (Tanaka et al. 1997).

(5.6), it is easy to show that

exp

(
−
∫ t∗

0

C

η
ds

)
> 1 for η > η0 > η∞. (5.10)

Starting from an isotropic turbulence (b0 = 0), the normalised strain rate will initially
grow, according to equation (3.22) rewritten as

dη

dt∗
= (Cε1 − 1)

[(P
ε

)
∞
− P

ε

]
, (5.11)

where the initial production-to-dissipation ratio is 0 (with Cε1 > 1 and Cε2 > 1, as is
virtually always the case). For cases where η0 > η∞, the factor in front of b∞ in (5.2)
will then be negative, leading to a negative production-to-dissipation ratio. In this
case, dη/dt∗ > 0, and the normalised strain rate will further increase, leading finally
to an unbounded growth of the whole system.

As a first illustration of the performances of these various non-equilibrium models,
consider a uniformly sheared flow (ω = D) subjected to a solid-body rotation. As
pointed out by Speziale et al. (1996), single-point closures are able to correctly
delimit the stability boundaries of such flows consistent with RDT theory (Cambon
et al. 1994). The predictions of the present non-equilibrium model are compared to the
recent direct numerical simulation (DNS) results of Tanaka et al. (1997). Four rotation
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Figure 11. (a) Time evolution of the normalised strain rate η; (b) time evolution of the second
invariant of the anisotropy tensor. , Present non-equilibrium model; , non-equilibrium
relaxation model (Speziale & Xu 1996); , non-equilibrium relaxation model (Girimaji 1999);

, RDT solution (only shown for (b)); e, experiments (Leuchter et al. 1992).

regimes are considered: Ω/D = 0, 0.25, 0.5, and 1, and the corresponding values of the
flow parameter |R| are, respectively, |R| = 1, 0.125, 1.25, and 3.5, for the SSG pressure–
strain rate correlation cw values. The initial turbulence is isotropic, with η0 ≈ 5.66.
Figure 10 shows the time evolution of the normalised production P/K = −2Db12 for
the different rotation regimes. The same evolution is also plotted in figure 10 for the
relaxation models in (5.1) with the relaxation coefficient defined by (5.4) or by (5.5).
Unfortunately, in the latter case, the model is unstable in the two rotation regimes
Ω/D = 0 and 0.25, since according to equation (4.14), η∞ = 4.27 and 2.85, respectively.
For these two cases, η0 > η∞, and the Girimaji (1999a) relaxation model is not stable,
for the reasons discussed above. This can be seen in figure 10, where the value of P/K
goes to −∞ in this case. For the other cases, while the long-time solutions predicted
by the present non-equilibrium model and the relaxation models are identical, the
initial behaviour is radically different. The relaxation models lead to shear stress
anisotropy evolutions that differ significantly from the experimental ones, while the
present non-equilibrium model is able to capture the initial trends, including the
strongly rotating case, for which the production −2Db12 oscillates and takes negative
values, which contributes to the rapid decay of turbulence. The relaxation models
incorrectly predict b12 = 0 for this rotation regime, simply because b∞12 = b12(0) = 0.
Due to this inherent limitation, the relaxation models are unable to reproduce any
limit-cycle behaviour.

As a second illustration, consider the case of homogeneous turbulence subjected
to a rotation-dominated plane distortion. The mean velocity gradients are defined by
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(3.23), with ω/D = 2 and D = 31.4 s−1. Such elliptic flows are also characterised by
the aspect ratio E = [(ω +D)/(ω −D)]1/2 of the mean flow streamline pattern. Here,
the reference frame is inertial (Ω = 0), and the corresponding value of R is 2 and E is√

3. As pointed out by Leuchter, Benoit & Cambon (1992), as ω > D, the Lagrangian
displacement gradient tensor associated with the velocity field is periodic in time, with
a period 2π(ω2 − D2)−1/2. In the experiment of Leuchter et al. (1992), the turbulence
at the beginning of the distorting section is slightly anisotropic, with an axisymmetric
component (b11 = −0.041, b22 = −0.043, b33 = 0.084, and b12 = −0.011). The
corresponding experimental value of DK0/ε0 is as low as 0.527, leading to η0 = 0.745.
Since for this homogeneous flow configuration, R > Rlim, the normalised strain rate η
will grow unbounded, and the time evolution of the anisotropy will have an oscillatory
character. This is illustrated on figure 11, where the evolution of η is shown over one
period of the mean velocity deformation. Since the initial value of η is very small,
the oscillations will undergo a fast initial damping, as explained in a previous section,
and illustrated in figure 7. The time evolution of the second invariant of the Reynolds
stress anisotropy, IIb, is also shown in figure 11 for the present non-equilibrium model
and for the relaxation models. For comparison, results from RDT are also shown (see
Leuchter et al. 1992). These results are encouraging since it has been shown that even
in this (weak) elliptic flow single-point closures can still predict qualitative features
of the turbulence. Nevertheless, it should be expected that stronger elliptic flows
with lower aspect ratios E will yield poorer predictions for both the full differential
Reynolds stress model and the algebraic stress model.

The present non-equilibrium model is able to reproduce the main features of
the evolution of IIb, whereas the undulations of the RDT solution are much more
pronounced than in the experiments, with a higher amplitude and shorter wavelength,
obviously a consequence of the low value of the normalised strain rate η and of
neglecting the nonlinear damping effects in the calculations (Leuchter et al. 1992).
The relaxation models do not capture any oscillation, and show a too rapid increase.

6. Conclusions
A general procedure has been developed that allows the investigation of the time

evolution of the Reynolds stress anisotropy components in all planar homogeneous
turbulent flows. The procedure takes the evolution equation for the Reynolds stress
anisotropy tensor and replaces it with an equivalent system of equations for char-
acteristic scalar invariants. This equivalent system can then be used for assessing
the dynamical behaviour of a variety of turbulence closure models. This includes
pressure–strain rate models which are quadratic (or higher) in the anisotropy tensor
and in which other anisotropic effects, such as dissipation rate anisotropy, can be
taken into account. For the case of quasi-linear pressure–strain rate models, the sys-
tem of ordinary differential equations can be analytically integrated when the relative
strain parameter is assumed to vary slowly, and an explicit expression can be found
for the time evolution of the anisotropy of the Reynolds stress tensor in all planar
homogeneous flows. The present non-equilibrium solution accurately predicts both
the initial behaviour of the modelled Reynolds stress evolution, and the asymptotic
equilibrium states. With this solution, the full dynamic behaviour of the Reynolds
stresses has been investigated, including effects of initial states, early time evolution,
limit-cycle occurrence, and existence and global stability of the asymptotic states. In
addition, it has been demonstrated that the Reynolds stress invariants are uniquely
determined by the model closure coefficients, independent of any explicit dependence
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on the mean deformation field. Constraints for the development of more general and
realizable pressure–strain rate correlation models have also been determined. A non-
equilibrium stress model has been derived from the analytic temporal solution of the
Reynolds stress anisotropies, and has been shown to outperform recently proposed
relaxation models in temporally evolving homogeneous flows.
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Appendix A. Representation of b2 − 1
3{b2}I

Consider a symmetric, traceless tensor b for which the elements in any rectangular
coordinate system are functions of the elements of two independent traceless tensors
S∗ (symmetric) and W ∗ (antisymmetric) in the same coordinate system, which is
written as

bij = bij(S
∗
kl ,W

∗
kl).

The forms of these functional relationships also must be independent of the particular
coordinate system in which they are expressed; that is, the relation between b, S∗,
and W ∗ is isotropic (Rivlin & Ericksen 1955).

For two-dimensional mean flows, S∗ has one vanishing eigenvalue, and in the
principal coordinate system of S∗, the vorticity vector is aligned with the eigenvector
of S∗ that corresponds to the vanishing eigenvalue. If the tensor b∗ is also assumed
to have one eigenvector aligned with the eigenvector of S∗ that corresponds to the
vanishing eigenvalue, then the tensor b can be represented in terms of the tensors
S∗ and W ∗ and the scalar invariants {bS∗}, {bW ∗S∗}, and {bS∗2}, as (see Jongen &
Gatski 1998b)

b = {bS∗}S∗ +
{bW ∗S∗}
{W ∗2} (S∗W ∗ −W ∗S∗) + 6{bS∗2} (S∗2 − 1

3
I
)
. (A 1)

The quadratic term b2 − 1
3
{b2}I can also be represented in terms of the tensors S∗

and W ∗ and the scalar invariants {bS∗}, {bW ∗S∗}, and {bS∗2}.
If in expression (A 1) the symmetric, traceless tensor b is replaced by b2 − 1

3
{b2}I ,

then the following equation is obtained:

b2 − 1
3
{b2}I = {b2S∗}S∗ +

{b2W ∗S∗}
{W ∗2} (S∗W ∗ −W ∗S∗)

+6
({b2S∗2} − 1

3
{b2}) (S∗2 − 1

3
I
)
. (A 2)

Now, the scalar invariants {b2S∗}, {b2W ∗S∗}, and {b2S∗2} in (A 2) must be expressed
in terms of the scalar invariants {bS∗}, {bW ∗S∗}, and {bS∗2}.

For conciseness, relation (A 1) can be rewritten as

b =

3∑
i=1

αiTi, (A 3)
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where the scalar coefficients αi are

α1 = {bS∗}, α2 = {bW ∗S∗}/{W ∗2}, α3 = 6{bS∗2}, (A 4)

and the tensors Ti are given by

T1 = S∗, T2 = S∗W ∗ −W ∗S∗, T3 = S∗2 − 1
3
I . (A 5)

Therefore,

{b2S∗} = {b2T1}, {b2W ∗S∗} = − 1
2
{b2T2}, {b2S∗2} − 1

3
{b2} = {b2T3},

and if (A 3) is inserted into the above expressions, then

{b2Ti} =

3∑
j=1

3∑
k=1

αjαk{TjTkTi} (i = 1, 2, 3). (A 6)

Finally, the 27 invariants {TjTkTi}, (i, j, k = 1, 2, 3) must be evaluated. As a result
of symmetry properties ((j, k, i) = (i, j, k) = (k, i, j)), only 11 invariants must be
computed: (i, j, k) = (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 2, 3), (1, 3, 2), (1, 3, 3), (2, 2, 2),
(2, 2, 3), (2, 3, 3), and (3, 3, 3). With the generalised version of the Cayley–Hamilton
theorem (Spencer & Rivlin 1959), the only resulting non-zero invariants are

{T 2
1 T3} = 1

6
, {T 2

2 T3} = − 1
3
{W ∗2}, {T 3

3 } = − 1
36
,

together with the invariants that result from the cyclic permutations of the indices.
Therefore, the relations

{b2S∗} = 1
3
α1α3 = 2{bS∗}{bS∗2},

{b2W ∗S∗} = 1
3
α2α3{W ∗2} = 2{bW ∗S∗}{bS∗2},

{b2S∗2} − 1
3
{b2} = 1

6
α2

1 − 1
3
α2

2{W ∗2} − 1
36
α2

3 = 1
6
{bS∗}2 − 1

3

{bW ∗S∗}2
{W ∗2} − {bS∗2}2,


(A 7)

lead to the desired expression for the quadratic term in (3.2).

Appendix B. Derivation of {bS∗}, {bW ∗S∗}, and {bS∗2} equations
Starting from the tensor evolution equation for the Reynolds stress anisotropy

(2.11), a system of three scalar ordinary differential equations in the three scalar
unknowns {bS∗}, {bW ∗S∗}, and {bS∗2} can be derived.

By multiplying relation (2.11) by S∗, taking the trace of the equation, and using the
results of Appendix A to express {b2S∗} in terms of {bS∗} and {bS∗2}, the following
equation is obtained:{

db

dt∗
S∗
}

= −a0

η
{bS∗} − 2a3{bS∗2}+ 2a2{bW ∗S∗}+

2a4

η
{bS∗}{bS∗2} − a1 − {L∗S∗}.

(B 1)

Similarly, multiplying equation (2.11) by either W ∗S∗ or S∗2 and taking the trace of
the equation leads to the following equations, respectively:{

db

dt∗
W ∗S∗

}
= −a0

η
{bW ∗S∗} − a2

ζ2

η2
{bS∗}+

2a4

η
{bW ∗S∗}{bS∗2} − {L∗W ∗S∗}, (B 2)
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and {
db

dt∗
S2∗
}

= −a0

η
{bS∗2} − 1

3
a3{bS∗}+ 1

6
a4{bS∗}2

+
a4

3η

η2

ζ2
{bW ∗S∗}2 − a4

η
{bS∗2}2 − {L∗S∗2}. (B 3)

In obtaining these two equations, the following relations are used:

{bS∗3} = 1
2
{bS∗}, 2{bW ∗2S∗}+ {bW ∗S∗W ∗} = −1

2

ζ2

η2
{bS∗},

which are consequences of the Cayley–Hamilton theorem (Spencer & Rivlin 1959).
Because the velocity gradients have been assumed independent of time, the following
relations hold:{

db

dt∗
S∗
}

=
d

dt∗
{bS∗},

{
db

dt∗
W ∗S∗

}
=

d

dt∗
{bW ∗S∗},

{
db

dt∗
S2∗
}

=
d

dt∗
{bS∗2}.

(B 4)

Equations (B 1), (B 2), and (B 3) lead, therefore, to the desired system of scalar ordinary
differential equations for the invariants {bS∗}, {bW ∗S∗}, and {bS∗2},

d

dt∗
{bS∗} = −a0

η
{bS∗} − 2a3{bS∗2}+ 2a2{bW ∗S∗}

−a1 − {L∗S∗}+
2a4

η
{bS∗}{bS∗2}, (B 5)

d

dt∗
{bW ∗S∗} = −a0

η
{bW ∗S∗} − a2

ζ2

η2
{bS∗} − {L∗W ∗S∗}+

2a4

η
{bW ∗S∗}{bS∗2},

(B 6)

d

dt∗
{bS∗2} = −a0

η
{bS∗2} − 1

3
a3{bS∗} − {L∗S∗2}+

a4

6η
{bS∗}2

+
a4

3η

η2

ζ2
{bW ∗S∗}2 − a4

η
{bS∗2}2. (B 7)

Appendix C. Solution of anisotropy evolution equation
The change of variables

B1 = ψ, (C 1)

B2 =
a3

a2

ζ − a2R2

H
φ, (C 2)

B3 = ζ − a3

3H
φ, (C 3)

transforms system (3.6) into the quadratic system of ordinary differential equations

ζ̇ =
(
2αψ − β/η) ζ, (C 4)

φ̇ =
(
2αψ − β/η)φ+Hψ, (C 5)

ψ̇ =
(
2αψ − β/η)ψ + φ− a1, (C 6)
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where

H = 2
3
a2

3 − 2a2
2R2.

System (C 4)–(C 6) is subject to the following initial conditions:

ψ0 = ψ(0) = B1,0,

φ0 = φ(0) = 2a2B2,0 − 2a3B3,0,

ζ0 = ζ(0) =
1

H

(
2
3
a2a3B2,0 − 2a2

2R2B3,0

)
.

 (C 7)

The above relations are valid for H 6= 0. When H = 0, the differential system is
singular, and another change of variables has to be considered. We will assume for
the moment that H 6= 0, and will discuss the case H = 0 later. In the system (C 4)–
(C 6), the evolution of the two variables ψ and φ is independent of the evolution of
the variable ζ. Therefore, the quadratic system of ordinary differential equations

φ̇ = −(β/η)φ+Hψ + 2αψφ, (C 8)

ψ̇ = −(β/η)ψ + φ+ 2αψ2 − a1, (C 9)

can be solved, and the evolution of ζ is deduced by integrating (C 4),

ζ(t∗) = ζ0 exp

∫ t∗

0

[
2αψ(s)− β

η(s)

]
ds. (C 10)

Equation (C 8) is linear in φ and, after integration, the evolution of φ is given as a
function of ψ,

φ(t∗) = H exp

(∫ t∗

0

[2αψ(s)− β/η(s)] ds

)∫ t∗

0

ψ(r) exp

(
−
∫ r

0

[2αψ(s)− β/η(s)] ds

)
dr

+φ0 exp

(∫ t∗

0

[2αψ(s)− β/η(s)] ds

)
. (C 11)

Equation (C 9) is, on the contrary, quadratic in ψ. It is a generalised Riccati equation
(Davis 1962) which can be transformed into the homogeneous linear differential
equation of second order

ω̈ = β
ω̇

η
− 2α(φ− a1)ω (C 12)

by introducing the transformation (Bender & Orszag 1978)

ψ(t∗) = − 1

2α

(
ω̇(t∗)
ω(t∗)

− β

η(t∗)

)
. (C 13)

Equation (C 11) for φ can be rewritten in terms of ω,

φ(t∗) = −H
2α

+
1

2αω(t∗)

[
ω(0)(H + 2αφ0) + βH

∫ t∗

0

ω(s)

η(s)
ds

]
, (C 14)

and inserted into equation (C 12). This leads to the following linear integro-differential
equation:

ω̈ = β
ω̇

η
+

(
H + 2αa1 − β η̇

η2

)
ω − βH

∫ t∗

0

ω(s)

η(s)
ds− ω(0)(H + 2αφ0), (C 15)
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where ω(0) can take any non-zero value and ω̇(0)=−ω(0)(2αψ0−β/η0)=−ω(0)(2αB1,0

−β/η0), with η0 = η(0) as the initial value of the normalised strain rate. Finally,
equation (C 15) is integrated with the following transformation

Ψ1 =

∫
ω/η, Ψ2 = Ψ̇1 = ω/η,

Ψ3 = Ψ̇2 = ω̇/η + ω ˙(1/η), Ψ4 = Ψ̇3 = ω̈/η + 2ω̇ ˙(1/η) + ω ¨(1/η).

The functions Ψi are the solution of

Ψ̇1 = Ψ2, Ψ̇2 = Ψ3,

Ψ̇3 = −β
η
HΨ1 +

(
H + 2αa1 − η̈

η

)
Ψ2 +

1

η
(β − 2η̇)Ψ3 − η0

η
Ψ2(0)(H +H0),

 (C 16)

where the initial conditions are given by Ψ1(0) = 0, Ψ2(0) 6= 0, and Ψ3(0) = −Ψ2(0)×
(2αB1,0 − β/η0 − η̇0/η0); and H0 = 2αφ0 = 4α(a2B2,0 − a3B3,0).

In the general case for which the normalised strain rate varies in time, system (C 16)
is a linear system of ordinary differential equations with variable coefficients. In the
case of slow variations of η, the approximations

η̇

η
∼ 0,

η̈

η
∼ 0 (C 17)

are valid for not too small values of η. The system of ordinary differential equations
(C 16) can then be solved using standard integration methods for systems of first-order
differential linear equations with constant coefficients. After lengthy, but straightfor-
ward, computations the solution of the system (C 16) yields

Ψ1(t
∗) = C

[
3∑
r=1

pr
1

λr
eλrt

∗
+ p0(H +H0)

]
,

Ψ2(t
∗) = C 3∑

r=1

pre
λrt
∗
, Ψ3(t

∗) = C 3∑
r=1

prλre
λrt
∗
,

 (C 18)

where C = Ψ2(0)[(λ2 − λ1)(λ3 − λ1)(λ3 − λ2)]
−1 and

pr =
[
λ2
r − 2αB1,0λr − (H +H0)

]
(λs − λq), r = 1, 2, 3,

p0 =
λ3 − λ2

λ1

+
λ1 − λ3

λ2

+
λ2 − λ1

λ3

.

 (C 19)

In (C 19), the indices q and s are chosen such that eqrs = −1. The λr are eigenvalues
that are obtained as roots of the following cubic characteristic polynomial:

λ3 − β

η
λ2 − (H + 2αa1)λ+

β

η
H = 0. (C 20)

Finally, in terms of the original variables Bi(t
∗), the explicit solution is

B1(t
∗) =

1

2α

[
β

η(t∗)
− Ψ3(t

∗)
Ψ2(t∗)

]
,

B2(t
∗) =

a2R2

2α

[
1− β

η(t∗)
Ψ1(t

∗)
Ψ2(t∗)

− Ψ2(0)

Ψ2(t∗)

]
+
Ψ2(0)

Ψ2(t∗)
B2,0,

B3(t
∗) =

a3

6α

[
1− β

η(t∗)
Ψ1(t

∗)
Ψ2(t∗)

− Ψ2(0)

Ψ2(t∗)

]
+
Ψ2(0)

Ψ2(t∗)
B3,0.


(C 21)
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In (C 21), the initial condition Ψ2(0) 6= 0 is arbitrary, and its value can, therefore, be
taken as Ψ2(0) = 1.

In the above developments, it has been assumed that H 6= 0. When H = 0, another
transformation of variables has to be considered:

B1 = ψ, B2 =
a3

a2

φ+
1

2a2

ζ, B3 = φ, (C 22)

which leads to the same differential equations as (C 4)–(C 6), except for the equation
(C 5) for φ:

φ̇ =
(
2αψ − β/η)φ− 1

3
a3ψ, (C 23)

with the initial conditions

ψ0 = B1,0, φ0 = B3,0, ζ0 = 2a2B2,0 − 2a3B3,0. (C 24)

It therefore follows that the solution procedure outlined above is still valid, and the
same steps can be performed on the new system of ordinary differential equations
in the new transformed variables (ψ, φ, ζ). At the end, the resulting expression for
the solution in terms of the expansion coefficients Bi will still be given by equations
(C 18)–(C 21), but with H = 0. In this case, one characteristic root of (C 20) vanishes,
for example λ1 = 0, and λ2 + λ3 = β/η. It is simple to show that even if in this case
p0 → ∞ in (C 19), the characteristic functions Ψi, and therefore the representation
coefficients Bi, remain bounded since

lim
λ1→0

[
p1

λ1

eλ1t
∗

+ p0H
0

]
=

(
2αB1,0 − λ2 + λ3

λ2λ3

H0

)
(λ3 − λ2).
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Davis, H. J. 1962 Introduction to Nonlinear Differential and Integral Equations. Dover.

Ferziger, J. H. 1993 Subgrid-scale modelling. In Large-Eddy Simulation of Complex Engineering
and Geophysical Flows (ed. B. Galperin & S. A. Orszag), pp. 37–54. Cambridge University
Press.

Gatski, T. B. & Speziale, C. G. 1993 On explicit algebraic stress models for complex turbulent
flows. J. Fluid Mech. 254, 59–78.

Gibson, M. M. & Launder, B. E. 1978 Ground effects on pressure fluctuations in the atmospheric
boundary layer. J. Fluid Mech. 86, 491–511.

Girimaji, S. S. 1996 Fully explicit and self-consistent algebraic Reynolds stress model. Theor.
Comput. Fluid Dyn. 8, 387–402.

Girimaji, S. S. 1997 Dynamical system analysis of Reynolds stress closure equations. In Eleventh
Symp. on Turbulent Shear Flows, Institut National Polytechnique de Grenoble – Université Joseph
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